

In a 30-second test, PMI's FIT 2500 Fatigue Analyzer measures the speed with which the eye jumps through a defined arc, or saccade ("saccadic velocity")

The effectiveness and accuracy of saccadic velocity in assessing changes in alertness levels has been validated by a number of leading U.S. research laboratories for human impairment. To summarize their research:

- Changes in saccadic velocity correlate significantly to degraded alertness due to factors such as sleep deprivation and time-on-duty
- Saccadic velocity shows strong-to-moderate correlation with other fatigue-measuring techniques (which, themselves, also show strong-to-moderate correlation to each other)
- The presence of alcohol, impairing medications and illegal drugs can also affect saccadic velocity

| What FIT can do                                                                     | What FIT cannot do                                                                         |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Track changes over time in an individual's alertness levels                         | Compare one individual's alertness level against another's                                 |
| Create a profile of how fatigue is generated within a particular operating schedule | Determine whether a particular operating schedule is acceptably safe                       |
| Measure the overall impact of fatigue countermeasures<br>on alertness levels        | Be dropped into a setting to quickly determine whether fatigue countermeasures are working |

## Validation

Various research studies have validated the accuracy of the FIT's measurements of fatigue and impairment, including:

- Rowland L, Krichmar J, et al, "Pupil dynamics and eye movements as indicators of fatigue and sleepiness," *Sleep Res. 1997* 26:626.
- Russo M, Thomas M, et al, "Saccadic velocity and pupil constriction latency changes in partial sleep deprivation, and correlations with simulated motor vehicle crashes," *Sleep 1999*: 22 (Suppl. 1): S297-298.
- Stampi C, Aguirre A, et al, *Evaluation of Pulse FIT parameters for detection of fatigue (reduced alertness)*, Institute for Circadian Physiology (1994).
- Addiction Research Center (Johns Hopkins), Controlled-dose FIT tests for cocaine, unpublished, 1993.
- Addiction Research Center (Johns Hopkins), Controlled-dose FIT tests for marijuana, unpublished, 1993.
- Perrine B, et al, "Controlled-dose FIT tests for alcohol," unpublished, VT Alcohol Research Center, 1993.
- Thomas, Maria L. et al; (Division of Neuropsychiatry, Walter Reed Army Institute of Research), "Neural basis of alertness and cognitive performance impairments during sleepiness," *Elsevier /Thalamus & Related Systems 2* (2003) 199-229.
- Russo, M, Thomas, M, et al; "Oculomotor impairment during chronic partial sleep deprivation," *Elsevier Science Ireland, Ltd. for the International Federation of Clinical Neurophysiology* 114 (2003) 723-736.

Additional research not involving the FIT instrument has corroborated the relation between saccadic velocity and degraded alertness. Some studies include:

- De Gennaro L, Ferrara M, et al, "Oculomotor impairment after 1 night of total sleep deprivation: a dissociation between measures of speed and accuracy," *Clin Neurophysiol* 2000;111(10):1771-8.
- Paut O, Vercher, JL, et al, "Evaluation of saccadic eye movements as an objective test of recovery from anesthesia," *Acta Anaesthesiol Scand* 38(8): 1117-24 (1995)

- Roy-Byrne PP, Cowley DS, et al; *Psychopharmacology (Berl) 1993* 110:85-91 "Benzodiazepine pharmacodynamics: utility of eye movement measures"
- Continuous sleep deprivation study; Rowland, Krichmar, et al; *Sleep Res.* 1997 26:626.

## **Research uses**

Because of the FIT's accuracy and field-practicality, a variety of research studies have incorporated the FIT into their protocols in order to collect data on physiological changes under different conditions:

- Submarine watchstanding schedules; Miller; Air Force Research Laboratories (2001)
- Locomotive alerter evaluation; Popkin; Volpe for Federal Railroad Administration (2001)
- Caffeine and sleep deprivation study; Kamimori, Walter Reed Army Institute of Research (1999)
- Police officer fatigue study; Vila for Police Executive Research Forum (1999)
- Canalert; Moore-Ede for Canadian railroads (1996)
- Engineman Stress and Fatigue II tests; Volpe for Federal Railroad Administration (1995)
- Measures Over 30-Hours of Continuous Wake with and Without Caffeine; Yu, Russo, Johnson and Kamimori; USA Aeromedical Research Lab and Walter Reed Army Institute of Research (WRAIR) (2004)